

Exploring the interactions between Oligo-p-Phenylene Ethynylenes (OPEs) and Amyloid-β Aggregates

Gabriella Brinkley¹, Tye D Martin², David Whitten², Eva Y Chi², Deborah Evans³ 1. University of Minnesota Duluth. 2. Dept. of Biomedical Engineering, University of New Mexico. 3. Dept. of Chemistry and the Nanoscience and Microsystems Engineering Program (NSMS), University of New Mexico.

OPE¹⁻

OPE²⁺

UMD Duluth

Problem: Alzheimer's Disease (AD) is the sixth leading cause of death in America. Protein misfolding and aggregation, specifically that of Amyloid- β (A β), in the brain causes damage to the neuronal network.

Goal: Since studies show OPEs are useful sensors for A β aggregates, the use of all atom molecular dynamics (MD) to explore the patterns of binding between OPEs, in particular OPE¹⁻ and OPE²⁺ and A β , are preformed in order to gain and understanding of mechanisms that will improve detection and earlier diagnoses of AD.

Results:

OPE¹⁻ are commonly bound to hydrophobic and or positively charged regions

Summary: OPEs are useful sensors for Aβ aggregates.

Results show promising binding patterns and mechanisms which can provide insight on earlier detection and diagnoses of AD. OPE¹⁻ tends to bind to hydrophobic and positively charged or neutral amino acids. OPE²⁺ tend to bind to Valine rich areas, which are neutral and hydrophobic. Binding energies indicate strong favorable interaction between the OPEs and protofibril. In particular OPEs bound to the β -sheet result in a stronger complex than those on the tyrosine ends of the fibril.

Future Work:

- 1. Finish running all systems built out to 100 ns
- Continue binding energy calculations on the systems built with a higher concentration of OPEs and smaller protofibril to further validate or change conclusions about OPE binding favorability to regions on the protofibril.
- 3. Carry out analysis of OPE backbone conformations (bound vs. unbound) to gain insights into OPE fluorescence sensing.