

cathode, these supports are susceptible to corrosion. detachment of active sites.

support material.

Methods: Both in situ and ex situ methods were employed for synthesis of Ta_{0.05}Ti_{0.95}O₂ supported Fe-N-C catalysts. The following precursors were subjected to various heat treatments.

- 4-Aminoantipyrine
- $Fe(NO_3)_3 \cdot 9H_2O$
- $TaCl_{5}$
- TiO_2
- Silica (SSM only)

The scheme to the right outlines various synthesis routes. After the catalysts had been synthesized, each was loaded onto a RRDE and DECV tests were run in both acid and alkaline media.

THE UNIVERSITY of Optimization of Performance of Fe-N-C Catalysts on Tantalum-doped Titanium Dioxide Supports for ORR

James Burrow^{a,b}, Rohan Gokhale^a*, Aaron Roy^a, Plamen Atanassov^a ^a Center for Micro Engineered Materials, University of New Mexico, 1001 University Blvd. SE Suite 103, Albuquerque, NM 87106 ^b Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701

obtained from this study. Other graphs were also generated but are

Catalyst ID	AAP:Ta _{0.05} Ti _{0.95} O ₂	Fe:AAP
FeNC@Oxide 1-10	1%	10%
FeNC@Oxide 3-10	3%	10%
FeNC@Oxide 5-10	5%	10%
FeNC@Oxide 7-10	7%	10%
FeNC@Oxide 10-10	10%	10%
FeNC@Oxide 25-10	25%	10%
FeNC@Oxide 5-10 SSM	5%	10%
FeNC@Oxide 3-10 in situ	3%	10%
FeNC@Oxide 3-40	3%	40%
FeNC@Oxide 10-25	10%	25%
FeNC@Oxide 10-40	10%	40%

10% FeNC:Oxide had the best performance in both acid and alkaline. The ratio of 25% Fe:AAP showed best performance in acid, and in situ

of structure-performance relationship

