Mixed Metal Alkoxide Precursors for Direct Write of Complex Ceramic Oxide N-inks

William Crowley, Timothy J. Boyle, Diana Perales

Summer Project Focused on Synthesizing Ceramic Inks for Aerosol Jet 3D Printing

Goal:

3D print complex materials in complex architectures

Motivation:

Most 3D inks are plastic based, not ceramic

Background:

Ink Jet: Propels droplets of ink Gravure: Scaled up printing, 2D

Extrusion Casting: Thick colloid suspension

Aerosol Jet: Colloid suspension in air that can produce fine 3D prints

Synthesis of the Precursors Focused Mainly on Group 13 Alkyls

- · Reactions were done on both dimers and monomers
- Titanium and zirconium were the most common
- Reacted with mostly group 13 alkyls
- Also reacted with first row transition metal alkyls

Titanium Monomer

Results and Characterizations of Synthesized Mixed

Crystal Structure of $AMDBP[Zr_2(OBu^t)_5] + Al(Me)_3$ Crystal shows that a mixed

metal was synthesized, however

the AM-DBP₂ ligand was lost

Metals

PXRD spectrum of AMDBP[Ti2(ONep)5] + In(Mes)₃ Spectrum matches peaks seen in Indium Titanium Oxide

PXRD spectrum of AMDBP[Ti2(ONep)5] + Fe(Mes)₂, Spectrum matches the peaks seen in Iron Titanium Oxide

Conclusions

- Mixed metal complexes attempts
 - AMDBP[Ti₂(ONep)₅] + Fe(Mes)₂
 - AMDBP[Ti₂(ONep)₅] + In(Mes)₃
- One mixed metal that lost H₃-AM-DBP₂ ligand
 - AMDBP[Zr₂(OBu^t)] + Al(Me)₃
- H₃-AM-DBP₂ ligand is necessary in order to synthesize mixed metals
- Unsure of the effect of H₃-AM-DBP₂ on nanoparticle synthesis

