Development of Synthetic Cellular Mimics

By: Katherine Latimer PI: Bryan Kaehr

Problem

 The ability to bridge biological structures/functions to synthetic materials and devices is a scientific grand challenge.

Overarching Goal

• Create synthetic materials that match the structural, mechanical and functional properties of biological cells.

Project Goal

• Synthesize artificial red blood cells to develop a non-immunogenic universal carrier.

Approach

- Polyethylene glycol (PEG) hydrogel RBClike particles are derived from mesoporous silica cell replicas.
- Particles are loaded with an oxygen carrying core (Perfluorodecalin; PFD) using emulsification formulations to create fluorocarbon phases stabilized within RBC polymer particles.

using optical and fluorescence microsopy. Rhodamin dved aqueous phase Emulsion Charge Particle localization Surfactant to PFD emulsion Labeled PEG F-68 0.213 mV particles PEG 1.28 mV O2 core BSA -0.785 mV Emulsion F-68/BSA -1.14 mV droplets Labeled PEG particles in emulsion Labeled Emulsion Rhodamin dved particles in without emulsion with particles emulsion labeled particles

Sandia National

Determining particle/emulsions interactions

Future Directions

Results

- Determine encapsulation efficiency of PFD within the polymer RBC
- Tune chemistry of polymer particles to stabilize the fluorocarbon core
- Evaluate the O₂ carrying efficiency using spectroscopy (FTIR, UV-Vis) and Raman microscopy to evaluate encapsulation of oxygenated core