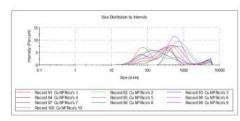

Gravure Printing of Metal N-Inks

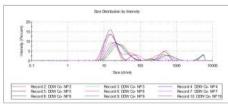
Devonte D. Woodard, Timothy J. Boyle, LaRico J. Treadwell, Nelson S. Bell, Fernando Guererro

Background:

- Gravure printing: Transfer inks into small wells engraved into the surface of a cylinder.
 - · Rapid characterizations
 - Can be lavered
 - · Faster than aerosol method
 - · When layered substrate can exhibit properties of inks
- · a cylinder with 'wells' rolls through an ink tray
- · The ink is picked up, excess removed
- Pressed against a substrate
- Technique introduced in the first half of the 15th century in Germany
- · Invented by Karel Klíč

Objectives:


- · Synthesize precursors for precursors.
- · Convert those to nanomaterials (good ones).
- · Synthesize/convert them into N-inks (useful ones).
- · Gravure print with mix metal N-inks (first!!)
- · Mix the different metals to print complex patterns.



Solution Precipitation (SPPT)

Results:

- · The prints are promising
- · Shows that the ink formula for aerosol printing
- Ink needs to be more disperse to fill all the wells
- · Shows we are able to print magnetic elements

Copper print

Cobalt print

Summary/ Future work:

- Synthesize precursors for precursors.
- Convert those to nanomaterials. (Cu, Co)
- Synthesize/convert them into N-inks. (Cu, Co)

Future work:

- Synthesize and print with Fe and Ni N-inks
- Synthesize mix metal N-ink
- Conduct test on the gravure printed metals
- Print different and complex patterns